SHAPING DATA & ENERGY CABLES WITH FLAME RETARDANT COMPOUND SOLUTIONS

GARAFLEX®
Thermoplastic Elastomer Compounds

GW Series
Specialty Flame Retardant PVC Compounds

MEGOLON®
Low Smoke Halogen Free Compounds

SMOKEGUARD®
Low Smoke Plenum Compounds

Mexichem
Specialty Compounds

Europe
+44 (0) 01664 882462

United States
+1 888 540 9074

AMEA
+91 75067 19580

msenquiries@mexichem.com | www.mexichemspecialtycompounds.com
Technical Articles

70 Alternative to soldering:
 Back-cast resistance welding
 electrodes made of tungsten and
 copper ensure optimum current
 transfer
 By Michael Bisaha, Gesellschaft für
 Wolfram Industrie mbH & Bayerische
 Metallwerke GmbH

74 Alternative zu Lötverfahren:
 Hintergossene
 Widerstandsschweißelektroden
 aus Wolfram und Kupfer sorgen
 für optimalen Stromübergang
 von Michael Bisaha, Gesellschaft für
 Wolfram Industrie mbH & Bayerische
 Metallwerke GmbH

78 Альтернатива пайке: приварные
 электроды для сварки
 сопротивлением, сделанные из
 вольфрама и меди, обеспечивают
 оптимальную передачу тока
 Михаэль Бисаха, Gesellschaft für
 Wolfram Industrie mbH & Bayerische
 Metallwerke GmbH

82 Alternative au brasage:
 Électrodes de soudage par résistance
 réalisées par la méthode back-casting en
 tungstène et cuivre assurant un passage
 de courant optimal
 par Michael Bisaha, Gesellschaft für
 Wolfram Industrie mbH & Bayerische
 Metallwerke GmbH

86 Alternativa alla brasatura:
 Elettrodi per saldatura a resistenza in
 tungsteno e rame realizzati mediante
 back-casting garantiscono un passaggio
 di corrente ottimale
 a cura di Michael Bisaha, Gesellschaft
 für Wolfram Industrie mbH & Bayerische
 Metallwerke GmbH

90 Alternativa al braseado: los electrodos
 de soldadura por resistencia de
 tungsteno y cobre realizados mediante
 back-casting garantizan
 una transferencia de corriente ideal
 Por Michael Bisaha, Gesellschaft für
 Wolfram Industrie mbH & Bayerische
 Metallwerke GmbH
Alternative to soldering: Back-cast resistance welding electrodes made of tungsten and copper ensure optimum current transfer

By Michael Bisaha, Gesellschaft für Wolfram Industrie mbH & Bayerische Metallwerke GmbH

As a common and easy-to-use welding method, resistance welding is used wherever metals have to be joined to each other without entrapped air or any impairment of their conductive properties.

Such applications are primarily found in the automobile, aviation, electrical and electronics, and household appliance industries.

The reproducibility of the joint is among the benefits of resistance welding. Here the quality of the electrode is crucial, among other things.

With Triconstant, Wolfram Industrie based in Bavaria, Germany, offers a resistance welding electrode that guarantees a flawless joint between copper and the tungsten insert, ensuring optimum, uninterrupted current transmission and better heat dissipation.

This is achieved by back-casting the electrode's tungsten core with copper or copper alloys, entirely avoiding the entrapment of air that frequently occurs in soldered electrodes and leads to poorer results.

An electrical engineering firm supplying the automobile industry welds several thousand copper wire ends to the coils of electric motors every day.

However, since the results of the previously used soldered electrodes were too variable and uncertain for the company, the new WHG3 resistance welding electrode has been used since the autumn of 2014.

This is a form of the Triconstant electrode from Wolfram Industrie and ensures more exact, reproducible results for point, seam, projection and butt welding. A tungsten or tungsten-lanthanum insert is back-cast with copper. The exact configuration of the resistance welding electrode is precisely adapted to the materials that will be joined. Only then is a solid weld guaranteed. A version with added pure copper is also available.

While copper reduces the mechanical strength of the electrode, it also improves current transmission and heat dissipation. This can significantly improve durability in certain cases.

“We achieve the special combination of the different materials with precise process control where the temperature gradients, times and also pressure gradients play an important role,” said Michael Bisaha, product manager composites at Wolfram Industrie.

Resistance welding electrodes made of various materials offer significant advantages when they are optimally combined with each other.

For example, their shafts and working surfaces are able to better withstand high thermal and mechanical loads in addition to offering technical and economic benefits: from an application technology perspective, the best possible combination of hardness and elasticity as well as thermal and electrical conductivity is produced, and economically, high durability is combined with better quality and therefore greater efficiency.

Gelötete Elektroden

Combination based on infiltration and surface wettability

Compared to competing materials such as pure copper, pure tungsten, copper-chrome-zirconium combinations or a soldered tungsten-copper-chrome-zirconium combination, the WHG3 made of back-cast tungsten-copper-WCu composite materials offers better results in terms of hardness and strength, electrical and thermal conductivity, heat resistance, erosion, adhesion tendency and durability.
Benefits of welded versus soldered joints

The special properties of the electrode material are extremely important for optimum work results; the point forces used to press two opposing electrodes against each other in resistance welding often lie in the range of several kN, depending on the material and process. Sufficient mechanical strength of the electrode therefore has to be guaranteed for the entire service life.

However, the pronounced alternating thermal load often causes severe electrode wear: the electrodes are stressed in a rapid sequence with short high-amperage current pulses of several kA, applied for less than 100 ms in some cases. The better the thermal and electrical conductivity, the greater the durability.

Here back-cast electrodes offer benefits since the properties of soldered electrodes can vary significantly from one electrode to the next.

Structure of the electrode

“Realising a reproducible, non-porous solder joint is not technically feasible at this time,” Mr Bisaha added. “The connection and therefore also the electrical contacting change, which means the resistance and therefore also the welding behaviour can fluctuate quite significantly between individual electrodes.”

In general, Wolfram Industrie works exclusively with tungsten or composite materials such as tungstite, for example made of tungsten and copper or tungsten and silver.

“This is an infiltration composite material where a porous sintered body made of tungsten is infiltrated with copper or silver,” added Mr Bisaha. Typical applications are found in eroding or contact material.

“The respective values not only depend on the geometry but also on the point welding machine, the welding parameters used and the materials being welded,” said Mr Bisaha about the expected results. “By using various inserts – such as pure tungsten or tungsten with, for example, WL20 or WCo20 doping – the heat resistance and conductivity can be individually adapted.”

The WHG3 also does not have a sandwich structure like other typical composite materials, since the combination is based on infiltration and surface wettability. The company fabricates the Triconstant electrodes according to the respective customer requirements and drawings. Both the power spectrum and requirements for the concrete dimensions are considered.